Abstract
Nine monoclonal antibodies specific for glycoprotein D (gD) of herpes simplex virus type 1 were selected for their ability to neutralize virus in the presence of complement. Four of these antibodies exhibited significant neutralization titers in the absence of complement, suggesting that their epitope specificities are localized to site(s) which contribute to the role of gD in virus infectivity. Each of these antibodies was shown to effectively neutralize virus after virion adsorption to cell surfaces, indicating that neutralization did not involve inhibition of virus attachment. Although some of the monoclonal antibodies partially inhibited adsorption of radiolabeled virions, this effect was only observed at concentrations much higher than that required to neutralize virus and did not correlate with complement-independent virus-neutralizing activity. All of the monoclonal antibodies slowed the rate at which virus entered cells, further suggesting that antibody binding of gD inhibits virus penetration. Experiments were carried out to determine the number of different epitopes recognized by the panel of monoclonal antibodies and to identify epitopes involved in complement-independent virus neutralization. Monoclonal antibody-resistant (mar) mutants were selected by escape from neutralization with individual gD-specific monoclonal antibodies. The reactivity patterns of the mutants and antibodies were then used to construct an operational antigenic map for gD. This analysis identified a minimum of six epitopes on gD that could be grouped into four antigenic sites. Antibodies recognizing four distinct epitopes contained in three antigenic sites were found to neutralize virus in a complement-independent fashion. Moreover, mar mutations in these sites did not affect the processing of gD, rate of virus penetration, or the ability of the virus to replicate at high temperature (39 degrees C). Taken together, these results (i) confirm that gD is a major target antigen for neutralizing antibody, (ii) indicate that the mechanism of neutralization can involve inhibition of virus penetration of the cell surface membrane, and (iii) strongly suggest that gD plays a direct role in the virus entry process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.