Abstract

The sequence H379-410 of the measles virus haemagglutinin (MV-H) protein forms a surface-exposed loop and contains three cysteine residues (Cys-381, Cys-386 and Cys-394) which are conserved among all measles isolates. It comprises the minimal sequential B cell epitope (BCE) (H386-400) of the neutralizing and protective MAb BH6 that neutralizes all wild-type viruses tested. The aim of this study was to design synthetic peptides which induce neutralizing antibodies against MV wild-type isolates. Peptides containing one or two copies of T cell epitopes (TCE) and BCEs of different lengths (H386-400, B(CC); H379-400, B(CCC)), in different combinations and orientations were produced and iteratively optimized for inducing neutralizing antibodies. Peptides with the shorter BCE induced sera that cross-reacted with MV but did not neutralize. The longer BCE containing the three cysteines (B(CCC)) and two homologous TCE were required for neutralization activity. These sera neutralized wild-type strains of different clades and geographic origins. Neutralizing serum was also obtained after immunization with human promiscuous TCEs. Furthermore B(CCC)-based peptides were fully immunogenic even in the presence of pre-existing MV-specific antibodies. The results suggest that subunit vaccines based on such peptides could potentially be used to actively protect infants against wild-type viruses irrespective of persisting maternal antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call