Abstract

Calcium species in mineral aerosols collected simultaneously in Aksu (near the Taklimakan Desert), Qingdao (eastern China), and Tsukuba (Japan) during dust and nondust periods were determined using Ca K-edge X-ray absorption near-edge structure (XANES). From the fitting of XANES spectra, it was found that (i) calcite and gypsum were the main Ca species in the aerosol samples, and (ii) the gypsum fraction versus total Ca minerals [Gyp]/[Ca2+]t increased progressively in the order Aksu < Qingdao < Tsukuba. Surface-sensitive XANES in the conversion electron yield mode (CEY) showed that the gypsum is formed selectively at the surface of mineral aerosols for all the samples except for that taken in Aksu during the dust period. The decrease of the [Gyp]/[Ca2+]t ratio with an increase in particle size showed that the neutralization effect proceeds from the particle surface. For the Aksu sample in the dust period, however, (i) the [Gyp]/[Ca2+]t ratios obtained by XANES measured in the fluorescence (FL; regarded as bulk analysis) and CEY modes were similar and (ii) size dependence was not found, showing that neutralization is not important for the sample because of the large supply of mineral aerosol with little neutralization effect in Aksu. It was also found that the pH of the aerosol and the ratio of (NH4)2SO4 to gypsum were positively and negatively correlated with the Ca (or calcite) content, respectively. The speciation of Ca by XANES revealed the neutralization processes of acidic sulfur species by calcite during the long-range transport of mineral aerosols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call