Abstract
The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to he the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H+ by the foliage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.