Abstract

IntroductionAngular deformities of the distal femur can be corrected by opening, closing and neutral wedge techniques. Opening wedge (OW) and closing wedge (CW) are popular and well described in the literature. CW and OW techniques lead to leg length difference whereas the advantage of neutral wedge (NW) technique has several unique advantages. NW technique maintains limb length, wedge taken from the closing side is utilised on the opening side and since the angular correction is only half of the measured wedge on either side, translation of distal fragment is minimum. Leg lengths are not altered with this technique hence a useful technique in large deformities. We found no reports of clinical outcomes using NW technique. We present a technique of performing external fixator assisted NW correction of large valgus and varus deformities of distal femur and dual plating and discuss the results.Materials & MethodsWe have treated 20 (22 limbs – 2 patients requiring staged bilateral corrections) patients for distal femoral varus and valgus deformities with CWDFO between 2019 and 2022. Out of these 4 patients (5 limbs) requiring large corrections of distal femoral angular deformities were treated with Neutral Wedge (NW) technique. 3 patients (four limbs) had distal femoral valgus deformity and one distal femoral varus deformity. Indication for NW technique is an angular deformity (varus or valgus of distal femur) requiring > 12 mm opening/closing wedge correction. We approached the closing side first and marked out the half of the calculated wedge with K – wires in a uniplanar fashion. Then an external fixator with two Schanz screws is applied on the opposite side, inserting the distal screw parallel to the articular surface and the proximal screw 6–7 cm proximal to the first pin and at right angles to the femoral shaft mechanical axis. Then the measured wedge is removed and carefully saved. External fixator is now used to close the wedge and over correct, creating an appropriate opening wedge on the opposite side. A Tomofix (Depuoy Synthes) plate is applied on the closing side with two screws proximal to osteotomy and two distally (to be completed later). Next the osteotomy on the opposite side is exposed, the graft is inserted. mLDFA is measured under image intensifier to confirm satisfactory correction. Closing wedge side fixation is then completed followed by fixation of opposite side with a Tomofix or a locking plate.Results3 patients (4 limbs) had genu valgum due to constitutional causes and one was a case of distal femoral varus from a fracture. Preoperative mLDFA ranged from 70–75° and in one case of varus deformity it was 103°. We achieved satisfactory correction of mLDFA in (85–90°) in 4 limbs and one measured 91°. Femoral length was not altered. JLCA was not affected post correction. Patients were allowed to weight bear for transfers for the first six weeks and full weight bearing was allowed at six weeks with crutches until healing of osteotomy. All osteotomies healed at 16–18 weeks (average 16.8 weeks). Patients regained full range of movement. We routinely recommend removal of metal work to facilitate future knee replacement if one is needed. Follow up ranged from 4 months to 2 yrs. Irritation from metal work was noted in 2 patients and resolved after removing the plates at 9 months post-surgery.ConclusionsNWDFO is a good option for large corrections. We describe a technique that facilitates accurate correction of deformity in these complex cases. Osteotomy heals predictably with uniplanar osteotomy and dual plate fixation. Metal work might cause irritation like other osteotomy and plating techniques in this location.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call