Abstract
Shiny black, air-insensitive crystals of tellurium-rich one-dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl(4). The compounds [Ru(Te(9))](InCl(4))(2) and [Ru(Te(8))]Cl(2) crystallize in the monoclinic space group type C2/c, whereas [Rh(Te(6))]Cl(3) adopts the trigonal space group type R ̅3c. In the crystal structures, linear, positively charged [M(m+) (Te(n)(±0))] (M=Ru, m=2; Rh, m=3) chains run parallel to the c axes. Each of the uncharged Te(n) molecules (n=6, 8, 9) coordinates two transition-metal atoms as a bridging bis-tridentate ligand. Because the coordinating tellurium atoms act as electron-pair donors, the 18-electron rule is fulfilled for the octahedrally coordinated transition-metal cations. Based on DFT calculations, the quantum theory of atoms in molecules (QTAIM) and the electron localizability indicator (ELI) provide insight into the principles of the polar donor bonding in these complexes. Comparison with optimized ring geometries reveals substantial tension in the coordinating tellurium molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.