Abstract
The molecular mechanisms underlying hypoxic pulmonary vasoconstriction (HPV) are not yet properly understood. Mitochondrial electron transport chain (ETC) and NADPH oxidase have been proposed as possible oxygen sensors, with derived reactive oxygen species (ROS) playing key roles in coupling the sensor(s) to the contractile machinery. We have recently reported that activation of neutral sphingomyelinase (nSMase) and protein kinase C ζ (PKCζ) participate in the signalling cascade of HPV. Herein, we studied the significance of nSMase in controlling ROS production rate in rat pulmonary artery (PA) smooth muscle cells and thereby HPV in rat PA. ROS production (analyzed by dichlorofluorescein and dihydroethidium fluorescence) was increased by hypoxia in endothelium-denuded PA segments and their inhibition prevented hypoxia-induced voltage-gated potassium channel (K(V) ) inhibition and pulmonary vasoconstriction. Consistently, H(2) O(2) , or its analogue t-BHP, decreased K(V) currents and induced a contractile response, mimicking the effects of hypoxia. Inhibitors of mitochondrial ETC (rotenone) and NADPH oxidase (apocynin) prevented hypoxia-induced ROS production, K(V) channel inhibition and vasoconstriction. Hypoxia induced p47(phox) phosphorylation and its interaction with caveolin-1. Inhibition of nSMase (GW4869) or PKCζ prevented p47(phox) phosphorylation and ROS production. The increase in ceramide induced by hypoxia (analyzed by immunocytochemistry) was inhibited by rotenone. Exogenous ceramide increased ROS production in a PKCζ sensitive manner. We propose an integrated signalling pathway for HPV which includes nSMase-PKCζ-NADPH oxidase as a necessary step required for ROS production and vasoconstriction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.