Abstract

Ultraviolet-irradiation of hydrogen halide containing rare gas matrices yields the formation of linear centrosymmetric cations of type (XHX)+, (X=Ar, Kr, Xe). Annealing of the irradiated doped solids produces, along with thermoluminescence, extremely strong absorptions in the 1700–1000 cm−1 region. Based on isotopic substitution and halogen dependence of these bands, the presence of hydrogen and halogen atom(s) in these species is evident. In the present paper we show the participation of rare gas atom(s) in these new compounds. The evidence is based on studies of the thermally generated species in mixed rare gas matrices. The new species are assigned as neutral charge-transfer molecules HX+Y− (Y=halogen), and their vibrational spectra are discussed and compared with those calculated with ab initio methods. This is the first time hydrogen and a rare gas atom has been found to make a chemical bond in a neutral stable compound. The highest level ab initio calculations on the existence of compounds of type HXY corroborate the experimental observations. The mechanism responsible for the formation of these species is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.