Abstract

Rovibrational spectroscopy band fitting of the nitrogen (N2) second positive system is a technique used to estimate the neutral gas temperature of N2 discharges, or atomic discharges with trace amounts of a N2 added. For mixtures involving argon and N2, resonant energy transfer between argon metastable atoms (Ar*) and N2 molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N2 mixtures, for N2 percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N2 addition, but are reasonable for argon with less than 5% N2 addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N2 addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.