Abstract

Environmental variation can play an important role in ecological competition by influencing the relative advantage between competing species. Here, we consider such effects by extending a classical, competitive Moran model to incorporate an environment that fluctuates periodically in time. We adapt methods from work on these classical models to investigate the effects of the magnitude and frequency of environmental fluctuations on two important population statistics: the probability of fixation and the mean time to fixation. In particular, we find that for small frequencies, the system behaves similar to a system with a constant fitness difference between the two species, and for large frequencies, the system behaves similar to a neutrally competitive model. Most interestingly, the system exhibits nontrivial behavior for intermediate frequencies. We conclude by showing that our results agree quite well with recent theoretical work on competitive models with a stochastically changing environment, and discuss how the methods we develop ease the mathematical analysis required to study such models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.