Abstract
Numerous evolutionary studies have sought to explain the distribution of diversity across the limbs of the tree of life. At the same time, ecological studies have sought to explain differences in diversity and relative abundance within and among ecological communities. Traditionally, these patterns have been considered separately, but models that consider processes operating at the level of individuals, such as neutral biodiversity theory (NBT), can provide a link between them. Here, we compare evolutionary dynamics across a suite of NBT models. We show that NBT can yield phylogenetic tree topologies with imbalance closely resembling empirical observations. In general, metacommunities that exhibit greater disparity in abundance are characterized by more imbalanced phylogenetic trees. However, NBT fails to capture the tempo of diversification as represented by the distribution of branching events through time. We suggest that population-level processes might therefore help explain the asymmetry of phylogenetic trees, but that tree shape might mislead estimates of evolutionary rates unless the diversification process is modeled explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.