Abstract

FNS-ST is a fusion neutron source project based on a spherical tokamak (R/a = 0.5 m/0.3 m) with a steady-state neutron generation of ~1018 n/s. Neutral beam injection (NBI) is supposed to maintain steady-state operation, non-inductive current drive and neutron production in FNS-ST plasma. In a low aspect ratio device, the toroidal magnetic field shape is not optimal for fast ions confinement in plasma, and the toroidal effects are more pronounced compared to the conventional tokamak design (with R/a > 2.5). The neutral beam production and the tokamak plasma response to NBI were efficiently modeled by a specialized beam-plasma software package BTR-BTOR, which allowed fast optimization of the neutral beam transport and evolution within the injector unit, as well as the parametric study of NBI induced effects in plasma. The “Lite neutral beam model” (LNB) implements a statistical beam description in 6-dimensional phase space (106–1010 particles), and the beam particle conversions are organized as a data flow pipeline. This parametric study of FNS-ST tokamak is focused on the beam-plasma coupling issue. The main result of the study is a method to achieve steady-state current drive and fusion controllability in beam-driven toroidal plasmas. LNB methods can be also applied to NBI design for conventional tokamaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call