Abstract

The synthesis and reactivity of dibenzyl cationic tantalum imido complexes is described. The trialkyl tantalum imido compounds Bn(3)Ta=NCMe(3) (1) and Np(3)Ta=NCMe(3) (2) were synthesized as starting materials for the study of dialkyl cationic tantalum imido complexes. Compound 1 undergoes insertion reactions with diisopropylcarbodiimide and 2,6-dimethylphenylisocyanide to give (bisamidinate)imido complex 5 and (bisimino-acyl)imido complex 6, respectively. Treatment of compound 1 with B(C(6)F(5))(3) gives the zwitterionic tantalum complex [Bn(2)Ta=NCMe(3)][BnB(C(6)F(5))(3)] (7) which is stabilized by eta(6)-coordination of the benzyl triaryl borate anion. Coordination of the aryl anion can be displaced by three equivalents of pyridine to give the Lewis base complex 8. Treatment of compound 1 with [Ph(3)C][B(C(6)F(5))(4)] gives the cationic tantalum imido complex [Bn(2)Ta=NCMe(3)][B(C(6)F(5))(4)] (3). This salt forms insoluble aggregates unless trapped by THF coordination or an insertion reaction with an alkyne or an alkene. Cation 3 undergoes migratory insertion reactions with diphenylacetylene, phenylacetylene, norbornene, and cis-cyclooctene to give the corresponding alkenyl or modified alkyl imido complexes. The characterization of these products and the significance of these insertion reactions with respect to Ziegler-Natta polymerizations and hydroamination reactions are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call