Abstract

(1) Background: A well-established Boron Neutron Capture Therapy (BNCT) facility includes many essential systems, which are the epithermal neutron beam system, on-line monitoring system (OMS), QA/QC (quality assurance or quality control) system, boron concentration (BC) measurement system, and treatment planning system (TPS). Accurate data transmission, monitoring, and deposition among these systems are of vital importance before, during, and after clinical, animal, and cell BNCT irradiation. This work developed a novel integrated platform NeuTHOR Station (NeuTHORS) for BNCT at Tsing Hua Open-pool Reactor (THOR). Apart from the data of the OMS and QA/QC system, the data of BC and TPS can be loaded on NeuTHORS before BNCT clinical, animal, and cell irradiation. (2) Methods: A multi-paradigm computer programming language c# (c sharp) was used to develop the integrated platform NeuTHORS. The design of NeuTHORS is based on the standard procedures of BNCT treatment or experiment at THOR. Moreover, parallel testing with OMS-BNCT (the former OMS) and QA/QC of THOR was also performed for more than 70 times to verify the validation of NeuTHORS. (3) Results: According to the comparisons of the output, NeuTHORS and OMS-BNCT and QA/QC of THOR show very good consistency. NeuTHORS is now installed on an industrial PC (IPC) and successfully performs the monitoring of BNCT Treatment at THOR. Patients' f BC and TPS data are also input into NeuTHORS and stored on IPC through an internal network from BC measurement room and TPS physicist. Therefore, the treatment data of each patient can be instantaneously established after each BNCT treatment for further study on BNCT. NeuTHORS can also be applied on data acquisition for a BNCT-related study, especially for animal or cell irradiation experiments. (4) Conclusions: A novel integrated platform NeuTHOR Station for monitoring BNCT clinical treatment and animal and cell irradiation study has been successfully established at THOR. With this platform, BNCT radiobiology investigations will be efficiently performed and a thorough data storage and analysis system of BNCT treatments or experiments can thus be systematically built up for the further investigation of BNCT at THOR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call