Abstract

Ionospheric error is one of the largest errors affecting global navigation satellite system (GNSS) users in open-sky conditions. This error can be mitigated using different approaches including dual-frequency measurements and corrections from augmentation systems. Although the adoption of multi-frequency devices has increased in recent years, most GNSS devices are still single-frequency standalone receivers. For these devices, the most used approach to correct ionospheric delays is to rely on a model. Recently, the empirical model Neustrelitz Total Electron Content Model for Galileo (NTCM-G) has been proposed as an alternative to Klobuchar and NeQuick-G (currently adopted by GPS and Galileo, respectively). While the latter outperforms the Klobuchar model, it requires a significantly higher computational load, which can limit its exploitation in some market segments. NTCM-G has a performance close to that of NeQuick-G and it shares with Klobuchar the limited computation load; the adoption of this model is emerging as a trade-off between performance and complexity. The performance of the three algorithms is assessed in the position domain using data for different geomagnetic locations and different solar activities and their execution time is also analysed. From the test results, it has emerged that in low- and medium-solar-activity conditions, NTCM-G provides slightly better performance, while NeQuick-G has better performance with intense solar activity. The NTCM-G computational load is significantly lower with respect to that of NeQuick-G and is comparable with that of Klobuchar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.