Abstract

ABSTRACT Prey animals use various signals to detect their predators and respond accordingly to enhance their survival. Since responding to a predator is costly, prey species may cut cost by using other strategies such as behavioural tactics, morphological changes, seeking natural refuge or unique habitat acquisition. Tadpoles of Microhyla nilphamariensis have a transparent body and live in a neustonic environment, which provides them protection against benthic predators. As a result, we investigated the predator detection mechanism in M. nilphamariensis tadpoles using different cues from an insect predator, dragonfly larvae, to determine if the presence of natural shelter and unique habitat acquisition influences the chemo-ecology of predator recognition in this species. We also exposed these tadpoles to active caged predators and a stress hormone, corticosterone (CORT) to study physiological mechanism underlying their behavioural anti-predator responses toward alarm cues. In the predator avoidance assay, M. nilphamariensis tadpoles did not respond to the predator using visual or chemical signals. The tadpoles did not change their activity in response to alarm, heterospecific, kairomones, and dietary cues released from the predator. Pre-conditioning of M. nilphamariensis tadpoles with caged predator and different concentrations of CORT also did not alter their activity in response to alarm cues. These results clearly demonstrated that neustonic tadpoles of M. nilphamariensis do not detect and respond to co-existing insect predator. We discuss these results in the context of unique habitat occupied by these prey tadpoles, the presence of alternate prey, and inherent factors such as transparent body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call