Abstract

Glial cell line-derived neurotrophic factor and neurturin are neurotrophic factors expressed in the striatum during development and in the adult rat. Both molecules act as target-derived neurotrophic factors for nigrostriatal dopaminergic neurons. While glial cell line-derived neurotrophic factor has also been described to have local trophic effects on striatal neurons, the effects of neurturin in the striatum have not yet been described. Here we examine whether neurturin protects striatal projection neurons (calbindin-positive) and interneurons (parvalbumin- or choline acetyltransferase-positive) in an animal model of Huntington’s disease. A fibroblast cell line engineered to over-express neurturin was grafted into adult rat striatum 24 h before quinolinate injection. In animals grafted with a control cell line, intrastriatal quinolinate injection reduced the number of calbindin-, parvalbumin- and choline acetyltransferase-positive neurons, seven days post-lesion. Intrastriatal grafting of neurturin-secreting cells protected striatal projection neurons, but not interneurons, from quinolinate excitotoxicity. This effect was much more robust than that reported previously for a glial cell line-derived neurotrophic factor-secreting cell line on striatal calbindin-positive neurons. However, intrastriatal grafting of glial cell line-derived neurotrophic factor- but not neurturin-secreting cells prevented the decrease in choline acetyltransferase activity induced by quinolinate injection. Taken together, our results show that neurturin- and glial cell line-derived neurotrophic factor-secreting cell lines have clearly differential effects on striatal neurons. Grafting of the neurturin-secreting cell line showed a more specific and efficient trophic effect on striatal projection neurons, the neuronal population most affected in Huntington’s disease. Therefore, our results suggest that neurturin is a good candidate for the treatment of this neurodegenerative disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.