Abstract

The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call