Abstract

The microinjection of nerve growth factor (NGF) and neurotrophin-3 (NT-3) into the rostral pontine tegmentum of adult cats rapidly induces long-lasting episodes of rapid eye movement (REM) sleep [J. Yamuy, F.R. Morales, M.H. Chase, Induction of rapid eye movement sleep by the microinjection of nerve growth factor into the pontine reticular formation of the cat, Neuroscience 66 (1995) 9–13]. Because this effect may be mediated by neurotrophin receptors, we sought to determine the distribution of neurons that contain low- and high-affinity neurotrophin receptors in regions of the feline pons and mesencephalon which are involved in the generation of REM sleep as well as neuronal groups that are involved in the control of REM sleep-related patterns of physiological activity. Using antibodies directed against p75, trkA, trkB and trkC, immunolabeled neurons were present in the latero-dorsal and pedunculo-pontine tegmental nuclei, the peribrachial nuclei, medial and lateral pontine reticular formation, the raphe nuclei, and the locus coeruleus. Giant reticular cells and large neurons in the mesencephalic trigeminal nucleus were immunoreactive for p75 and all trk receptors. Neurons that were devoid of neurotrophin-receptor immunoreactivity were intermingled with immunostained neurons in all explored structures. Thus, both low- and high-affinity neurotrophin receptors are conspicuously present in neurons located in mesopontine regions of adult cats. These data underscore the importance of neurotrophin-induced trophic actions on mesopontine neurons. Furthermore, the results support the hypothesis that NGF and NT-3 may modulate the electrical activity of neurons in the rostral pontine tegmentum that are responsible for the generation of REM sleep by acting on one or more of the neurotrophin receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.