Abstract

Rapid progress in the field of nerve tissue engineering has opened up the way for new therapeutic strategies for spinal cord injury (SCI). Bone marrow-derived mesenchymal stem cells (MSCs) could be differentiated into neural lineages, which can be used as a potential cell source for nerve repair. Schwann cells (SCs) have been reported to support structural and functional recovery of SCI. In this study, we co-cultured neurotrophin-3 (NT-3) gene-modified SCs and NT-3 receptor tyrosine protein kinase C (TrkC) gene-modified MSCs in a three-dimensional porous poly(lactic-acid-co-glycolic acid) (PLGA) conduit with multiple channels in vitro for 14 days. Our results showed that more than 50% of the grafted MSCs were MAP2- and β-III-tubulin-positive cells, and the MSCs expressed a high level of β-III-tubulin detected by Western blotting, indicating a high rate of neuronal differentiation. Furthermore, immunostaining of PSD95 revealed the formation of a synapse-like structure, which was confirmed under electron microscopy. In conclusion, co-culture of NT-3 gene-modified SCs and TrkC gene-modified MSCs in the PLGA multiple-channeled conduit can promote MSCs’ differentiation into neuron-like cells with synaptogenesis potential. Our study provides a biological basis for future application of this artificial MSCs/SCs/PLGA complex in the SCI treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.