Abstract

Neurotrophins are potent regulators of the survival of different neuronal populations in the CNS. Little is known of the immunodistribution of neurotrophin-3 (NT-3) and tyrosine kinase C (TrkC) receptor in the frog visual system, which can successfully regenerate and recover vision after injury. In this study we show that both NT-3 and TrkC are present in the frog retina and tectum, and that their distribution changes after optic nerve transection. Both NT-3 and TrkC are present in the ganglion cell layer, inner nuclear layer, nerve fiber layer and outer plexiform layer, and in Müller cells of control retinas. Quantification of identified RGCs shows that there are only small changes in the proportion, or intensity, of NT-3 immunostained cells surviving after axotomy and regeneration. Müller cell staining, however, is increased. TrkC staining in the retina does not change after axotomy. In the tectum, NT-3 immunoreactivity is present in the retinorecipient layer 9, and in radial processes of neurons and ependymoglia. TrkC is present in ependymoglia and in tectal neurons. After axotomy or colchicine treatment fewer NT-3-immunoreactive processes are present in layer 9 and there is decreased staining of tectal neurons. These data are consistent with the hypothesis that NT-3 is synthesized in the retina and anterogradely transported to the tectum. TrkC immunostaining, on the other hand, increases in tectal cells after optic nerve transection, suggesting that it may be regulated by the supply of NT-3 from the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.