Abstract

Neurotrophic factors (NTFs) are a pleiotropic group of secreted growth factors that regulate multiple aspects of neuronal development, including the regressive event of cell death. Skeletal muscleinnervating lower motoneurons (MNs) of the brain stem and spinal cord comprise one population of central neurons in which programmed cell death (PCD) during embryogenesis has been actively investigated, as much for reasons of technical facility as clinical relevance. The precise identity of NTF-dependent MNs has remained unclear, with most studies simply reporting losses or gains across the entire spinal cord or individual brain-stem nuclei. However, MNs are grouped into highly heterogenous populations based on transcriptional identity, target innervation, and physiological function. Therefore, recent work has focused on the effects of NTF overexpression or deletion on the survival of these MN subpopulations. Together with the recent progress attained in the generation of conditional mutant mice, in which the function of an NTF or its receptor can be eliminated specifically in MNs, these recent studies have begun to define the differential trophic requirements for MN subpopulations during PCD. The intent of this review is to summarize these recent findings and to discuss their significance with respect to neurotrophic theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call