Abstract

Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth, but little is known with respect to their regulation through soluble neurotrophic factors. In the present study, we have addressed this issue using cell culture models of three distinct cell populations derived from young rat retinas, namely, purified M uller glia, pigmented epithelium, and neurons respectively. Cultures were maintained in chemically defined media in the presence or absence of either basic fibroblast or epidermal growth factor. In control glial and epithelial cultures, hyaluronic acid dominated the soluble GAG pool, with lesser contributions from dermatan sulfate, chondroitin sulfate, and heparan sulfate (in decreasing order). Retinal neuronal GAG were almost exclusively chondroitin sulfate (approximately 90%). Treatment of glial and epithelial cultures with either factor led to dose-dependent increases in especially hyaluronic acid synthesis (a maximum 6-fold increase relative to control levels), with smaller but consistent changes in chondroitin sulfate. Similar treatment of retinal neurons did not lead to any changes in GAG synthesis. These data indicate that glia and pigment epithelia are the principal sources of GAG components in retina at least in vitro, and that endogenous neurotrophic growth factors can greatly modify GAG synthesis in these two retinal cell populations. Such data suggest that a delicate balance may exist between growth factor availability and glycoconjugate metabolism in vivo, participating in normal or pathological states of the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.