Abstract
The neurotrophins are a family of closely related proteins that were first identified as survival factors for sympathetic and sensory neurons and have since been shown to control a number of aspects of survival, development, and function of neurons in both the central and peripheral nervous systems. Limiting quantities of neurotrophins during development control the numbers of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. Biological effects of each of the four mammalian neurotrophins are mediated through activation of one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB, and TrkC). In addition, all neurotrophins activate the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor superfamily. Neurotrophin engagement of Trk receptors leads to activation of Ras, phosphatidylinositol 3-kinase, phospholipase C-γ1, and signaling pathways controlled through these proteins, including the mitogen-activated protein kinases. Neurotrophin availability is required into adulthood, where they control synaptic function and plasticity and sustain neuronal cell survival, morphology, and differentiation. This article will provide an overview of neurotrophin biology, their receptors, and signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.