Abstract

Resting membrane potential of both innervated and denervated rat diaphragm muscle fibers was investigated when the concentration of potential-producing ions was changed in the external fluid and following treatment with furosemide. It was found that equilibrium potential (\(E_{Cl^ - }\)) equalled resting potential level in innervated muscle for Cl−, but shifts to more positive values compared with resting membrane potential following section of the nerve. Furosemide retards development of post-denervation depolarization of the muscle membrane. It is deduced that trophic influences originating from the motor nerve activates the furosemide-sensitive Cl− influx system, leading to raised intracellular concentration of Cl−, a shift in (ECl) and depolarization of the muscle membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.