Abstract

Levels of monoamines and metabolites, excitatory amino acids, and gamma-aminobutyric acid (GABA) were investigated in discrete brain areas of chronic Jiawey Siwu (JS)-treated rats. Male Sprague-Dawley rats were dosed orally for 3 months with normal saline or JS at 0.21, 1.05 or 4.2 g/kg/day. Body weights of these four groups were similar over 3 months. Most effects of JS revealed a dose dependency with levels of neurotransmitters. Levels of norepinephrine (NE) and epinephrine (EPI) in cerebral cortex; EPI, vanillylmandelic acid (VMA), dopamine (DA) and 5-hydroxytryptamine (5-HT) in medulla oblongata; DA in midbrain; NE and 5-HT in amygdala; and 5-HT in hypothalamus had decreased in JS-treated rats. 3-Methoxytyramine (3-MT) in cerebral cortex; 5-hydroxyindole-3-acetic acid (5-HIAA) in medulla oblongata; NE, 3-MT and homovanillic acid (HVA) in pons; EPI and 3-MT in midbrain; 3-MT and HVA in amygdala; 3-MT, 3,4-dihydroxyphenylacetic acid (DOPAC), HVA and 5-HIAA in cerebellum; HVA in hypothalamus; and DOPAC and HVA in hippocampus had all increased in JS-treated rats. In pons, 5-HT increased with low and decreased with high JS doses. Ratios of DA/3-MT in pons and midbrain; DA/HVA in pons and cerebellum; and 5-HT/5-HIAA in medulla oblongata, cerebellum and hypothalamus had decreased. Furthermore, aspartate (ASP) and glutamate (GLU) levels had decreased in cerebral cortex, midbrain, hypothalamus and hippocampus or amygdala, and increased in pons. GABA levels were reduced in cerebral cortex, and higher in medulla oblongata, pons, amygdala, cerebellum, hippocampus and striatum of JS-treated rats. These results indicate that the synthesis and (or) metabolism of NE, DA, EPI and 5-HT, and the levels of ASP, GLU and GABA in rat brains were differentially regionally altered by JS, which may contribute to the central manifestations of JS treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.