Abstract
In this article we show some recent findings that constitute a great progress in the molecular knowledge of synaptic dynamics. To communicate, neurons use a code that includes electrical (action potentials) and chemical signals (neurotransmitters, neuromodulators). At the moment a great variety of molecules are known, whose neurotransmitter function in brain and the peripheral nervous system are out of question. Monoamines like acetylcholine, dopamine, noradrenaline, adrenaline, histamine, serotonin, glutamate, aspartate, glycine, ATP and GABA are good examples. Opioid neuropeptides, vasoactive intestinal peptide (VIP), neurokinines (substance P), somatostatin, neurotensin, neuropeptide Y, cholecystokinine, vasopressin or oxitocin have been related to the control of the stress response, sexual behaviour, food intake, pain, learning and memory, qualities that are also related to nitric oxide (NO). A great part of the molecular structure of the secretory machinery is known to be responsible for fast neurotransmitter release at the synapse, in response to action potentials. Proteins like sinaptobrevin (located in the membrane of the synaptic vesicle), sintaxin and SNAP-25 (both located at the presynaptic plasma membrane) constitute a trimeric complex which is responsible of the vesicular docking at the active sites for exocytosis. From this strategic location, vesicles release their neurotransmitter within few milliseconds, when the action potential invades the nerve terminal and activates the opening of the different subtypes of voltage-dependent Ca2+ channels. The asymmetric geographical distribution of each type of channel, in different neurons, rose the hypothesis that Ca2+ that enters through each subtype of channel is compartmentalised, thus favouring the generation of Ca2+ microdomains, in the cytosol and the nucleus, involved in different cellular functions. This great biochemical synaptic heterogeneity is facilitating the selection of many biological targets to develop drugs with potential therapeutic applications in neuropsychiatric diseases i.e. Alzheimer's, Parkinson, epilepsies, stroke, vascular dementia, depression, schizophrenia, anxiety and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.