Abstract

In Parkinson's disease, apoptosis was proposed to cause cell death in nigral dopamine neurons. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, stereo-selectively induced apoptosis in human neuroblastoma SH-SY5Y cells. In this paper the intracellular mechanism of apoptosis was studied using N-methyl(R)salsolinol, 6-hydroxydopamine and peroxynitrite as inducers of apoptosis. Apoptotic cascade was initiated by opening of mitochondrial permeability transition pore, as shown by collapse of mitochondrial membrane potential, deltapsim. Apoptosis was executed by caspase 3 activation, followed by DNA fragmentation, which was antagonized by overexpressed Bcl-2. Propargylamines were found to protect the cells from apoptosis, and rasagiline, a selective irreversible inhibitor of type B monoamine oxidase was the most potent to prevent the cell death. Rasagiline preserved deltapsim, which was proved also in isolated mitochondria, and rasagiline completely suppressed the activation of caspases and DNA fragmentation. These results suggest that mitochondria regulate apoptotic process, which may be a target of neuroprotection by rasagiline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.