Abstract

Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.

Highlights

  • Over the past few decades, the occurrence of harmful algal blooms (HABs) has increased both in frequency and in geographic distribution in many regions of the world

  • In the past few decades, extensive studies have been devoted to the toxicology and pharmacology of dinoflagellate toxins [11], and five major seafood poisoning syndromes caused by toxins have been identified from the dinoflagellates (Table 1): paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP) and ciguatera fish poisoning (CFP)

  • This paper provides a brief overview of the origin, structure and clinical symptoms of PSP, NSP, CFP, Azaspiracid Shellfish Poisoning (AZP), yessotoxin and palytoxin produced by dinoflagellates as well as their molecular mechanisms of action on voltage-gated ion channels

Read more

Summary

Introduction

Over the past few decades, the occurrence of harmful algal blooms (HABs) has increased both in frequency and in geographic distribution in many regions of the world. In the past few decades, extensive studies have been devoted to the toxicology and pharmacology of dinoflagellate toxins [11], and five major seafood poisoning syndromes caused by toxins have been identified from the dinoflagellates (Table 1): paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP) and ciguatera fish poisoning (CFP) Besides these well-known poisonings, several new poisoning syndromes resulting from newly appearing dinoflagellate toxins, such as azaspiracid toxins, yessotoxin and palytoxin have been reported and characterized recently (Table 1), and this has increased global public concerns regarding dinoflagellate associated toxins. This paper provides a brief overview of the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by dinoflagellates as well as their molecular mechanisms of action on voltage-gated ion channels

Voltage-gated ion channels and neurotoxins
F OSO3Na
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call