Abstract

Methods enabling structural studies of membrane-integrated receptor systems without the necessity of purification provide an attractive perspective in membrane protein structural and molecular biology. This has become feasible in principle since the advent of dynamic nuclear polarization (DNP) magic-angle-spinning NMR spectroscopy, which delivers the required sensitivity. In this pilot study, we observed well-resolved solid-state NMR spectra of extensively (13)C-labeled neurotoxin II bound to the nicotinic acetylcholine receptor (nAChR) in native membranes. We show that TOTAPOL, a biradical required for DNP, is localized at membrane and protein surfaces. The concentration of active, membrane-attached biradical decreases with time, probably because of reactive components of the membrane preparation. An optimal distribution of active biradical has strong effects on the NMR data. The presence of inactive TOTAPOL in membrane-proximal situations but active biradical in the surrounding water/glycerol "glass" leads to well-resolved spectra, yet a considerable enhancement (ε = 12) is observed. The resulting spectra of a protein ligand bound to its receptor are paving the way for further DNP investigations of proteins embedded in native membrane patches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.