Abstract

Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloro-2-ethyl)phosphate (TCEP) are organophosphorous flame retardants with widespread usage and human exposures through food, inhalation, and dust ingestion. They have been detected in human tissues including urine and breast milk. Reports of disrupted neural growth in vitro, abnormal development in larval zebrafish, and altered thyroid hormones in several species have raised concern for neurodevelopmental toxicity. This is especially the case for TDCIPP, which is more potent and has more activity in those assays than does TCEP. We evaluated the potential for developmental neurotoxicity of TDCIPP and TCEP in a mammalian model. Pregnant Long–Evans rats were administered TDCIPP (15, 50, or 150mg/kg/day) or TCEP (12, 40, 90mg/kg/day) via oral gavage from gestational day 10 to weaning. Corn oil was the vehicle control in both studies. Body weight and righting reflex development were monitored in all pups. A subset of offspring at culling and weaning, and dams at weaning, were sacrificed for serum and organ collection for measurement of brain, liver, and thyroid weights, serum thyroid levels, and serum and brain acetylcholinesterase activities. Brain weights were also measured in a group of adult TDCIPP-treated offspring. One male and one female from each litter were allocated for behavioral testing at several ages: standard locomotor activity (preweaning, postweaning, adults), locomotor activity including a lighting change mid-way (postweaning, adults), elevated zero maze (postweaning, adults), functional observational battery (FOB; postweaning, adults), and Morris water maze (place learning, reference and working memory; adults). Neither chemical produced changes in maternal body weight or serum thyroid hormones, but relative liver weight was increased at the high doses of both TDCIPP and TCEP. In offspring, there were no effects on viability, litter size, or birth weight. With TDCIPP, absolute liver weights were lower at weaning and weight gain was lower in the high-dose offspring until about two months of age. Thyroid hormones and brain weights were not altered and acetylcholinesterase (both brain and serum) was not inhibited by either chemical. TDCIPP-treated offspring showed slight differences in floating in the water maze, hindlimb grip strength, and altered activity habituation, whereas TCEP-treated rats showed differences in quadrant time (probe) and middle-zone preference in the water maze. Regarding these few changes, the effects were minimal, mostly not related to dose, and did not appear treatment-related or biologically significant. Overall, these data do not support the potential for thyrotoxicity or developmental neurotoxicity produced by TDCIPP or TCEP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.