Abstract

AimsThe aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. Main methodsCarob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV–vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat’s body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. Key findingsThe present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SignificanceThe results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.