Abstract

Microplastics (MPs) were found to modulate the toxicity of other pollutants but the knowledge on the topic is still limited. The goals of this study were to investigate the short-term toxicity of cadmium (Cd) to wild Pomatochistus microps juveniles, the potential modulation of acute Cd toxicity by 1–5 µm polyethylene MPs in this species, and possible differences of sensitivity to Cd and MPs-Cd mixtures between juveniles from two distinct wild populations. Juveniles were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Portugal). One 96 h bioassay with M-est juveniles and another one with L-est juveniles were carried out in laboratory conditions. Each bioassay had 12 treatments: control, 5 Cd concentrations, 1 MPs concentration, and 5 MPs-Cd mixtures. No significant differences in Cd-induced mortality between juveniles from distinct estuaries or between juveniles exposed to Cd alone and those exposed to MPs-Cd mixtures were found. The total 96h LC10 and LC50 of Cd alone were 2 mg/L (95% CI: 0–4 mg/L) and 8 mg/L (95% CI: 2–17 mg/L), respectively. Cd alone significantly decreased the post-exposure predatory performance (PEPP) of M-est (≥6 mg/L) and L-est juveniles (≥3 mg/L), and acetylcholinesterase (AChE) activity of M-est juveniles (13 mg/L). MPs alone (0.14 mg/L) significantly reduced the PEPP and AChE activity of L-est juveniles but not of M-est juveniles. MPs-Cd mixtures (3–13 mg/L of Cd + 0.14 mg/L of MPs) significantly inhibited the PEPP of juveniles from both estuaries and AChE of L-est estuary juveniles but not of M-est juveniles. Evidences of toxicological interactions, namely antagonism, between MPs and Cd were found. Overall, the results indicate that MPs modulated the sub-lethal toxic effects of Cd in wild P. microps juveniles, especially neurotoxicity. Moreover, the environmental conditions of the natural habitats to which juveniles were exposed during pre-developmental phases influence the sub-lethal toxicity of Cd, MPs, and their mixtures. The implications to environmental and human risk assessment are discussed and further research is needed.

Highlights

  • Cadmium (Cd) and microplastics are pollutants of high concern regarding ecosystem, animal, and human health that are globally dispersed in marine, freshwater, and terrestrial ecosystems [1,2,3,4,5]

  • No mortality was recorded in the control groups. These results are in accordance with OECD guidelines for acute testing with juvenile fish [68] regarding these parameters, and indicate that the abiotic conditions during the exposure period were adequate to P. microps juveniles

  • The mean (±SD, N = 9) of the biological parameters recorded in the control group of the bioassay with M-est juveniles were: 2.2 ± 0.2 cm length; 0.10 ± 0.03 g weight; ± 8% predatory performance; ± 14 nmol/min/mg protein AChE activity, 26 ± 11 nmol/min/mg protein GST activity; and 0.5 ± 0.1 nmol thiobarbituric reactive substances (TBARS)/mg protein

Read more

Summary

Introduction

Cadmium (Cd) and microplastics (plastic debris

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.