Abstract

Chemotherapy exposure is a known risk factor for cancer-related cognitive impairments. Anthracycline-based regimens are commonly used chemotherapies that have been shown to be associated with cognitive impairment and brain changes in clinical studies. To directly compare the effects of anthracycline and nonanthracycline regimens on cognitive status and functional brain connectivity. In this observational study, we retrospectively examined cognitive and resting state functional magnetic resonance imaging data acquired from 62 primary breast cancer survivors (mean [SD] age, 54.7 [8.5] years) who were more than 2 years off-therapy, on average. Twenty of these women received anthracycline-based chemotherapy as part of their primary treatment, 19 received nonanthracycline regimens, and 23 did not receive any chemotherapy. Participants were enrolled at a single academic institution (Stanford University) from 2008 to 2014, and the study analyses were performed at this time. Cognitive status was measured using standardized neuropsychological tests, and functional brain connectivity was evaluated using resting state functional magnetic resonance imaging with a focus on the brain's default mode network. The anthracycline group demonstrated significantly lower verbal memory performance including immediate recall (F = 3.73; P = .03) and delayed recall (F = 11.11; P < .001) as well as lower left precuneus connectivity (F = 7.48; P = .001) compared with the other 2 groups. Patient-reported outcomes related to cognitive dysfunction (F = 7.27; P = .002) and psychological distress (F = 5.64; P = .006) were similarly elevated in both chemotherapy groups compared with the non-chemotherapy-treated controls. These results suggest that anthracyclines may have greater negative effects than nonanthracycline regimens on particular cognitive domains and brain network connections. Both anthracycline and nonanthracycline regimens may have nonspecific effects on other cognitive domains as well as certain patient reported outcomes. Further research is needed to identify potential methods for protecting the brain against the effects of various chemotherapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.