Abstract

The specificity and mechanism of the neurotoxic action of kainic acid (KA) was investigated by histological methods in the isolated retina of toads and goldfish. Particular attention was paid to the earliest and most sensitive response to KA in the outer plexiform layer (OPL). Of 21 compounds tested as potential mimics of KA neurotoxicity in the OPL, only the enantiomers of glutamate and aspartate mimicked KA, inducing a low-level neurotoxic effect at concentrations 5,000-10,000-fold higher than concentrations of KA giving comparable effects. Further, of 22 compounds tested as potential blockers of KA neurotoxicity in the OPL, only D-gamma-glutamylglycine, D,L-alpha-amino pimelic acid, sodium pentobarbital, D,L-alpha-amino adipic acid, L-glutamate, and L-aspartate blocked KA neurotoxicity (IC50 values of 0.1, 0.3, 0.3, 2, 5, and 15 mM, respectively). In ionic substitution experiments, KA-induced vacuolization was found to require sodium and chloride ions but not calcium ions in the extracellular medium. These findings support the hypothesis that KA combines with specific receptors in the membrane of susceptible neurons in the retinal OPL, leading to prolonged opening of membrane channels permeable to sodium and potassium ions. An accompanying equilibrating chloride influx may result in intracellular ion excess, leading to osmotic swelling and vacuolization. The membrane receptors involved in mediating the action of KA in the OPL are likely to be a class of postsynaptic or extrasynaptic glutamate receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call