Abstract
The inhibition of Ca2+ channel currents by endogenous brain steroids was examined in freshly dissociated pyramidal neurons from the adult guinea pig hippocampal CA1 region. The steady-state inhibition of the peak Ca2+ channel current evoked by depolarizing steps from -80 to -10 mV occurred in a concentration-dependent manner with the following IC50 values: pregnenolone sulfate (PES), 11 nM; pregnenolone (PE), 130 nM; and allotetrahydrocorticosterone (THCC), 298 nM. THCC, PE, and PES depressed a fraction of the Ca2+ channel current with a maximal inhibition of 60% of the total current. However, substitution of an acetate group for the sulfate group on PES resulted in a complete loss of activity. Progesterone had no effect (4% inhibition at 100 microM). Intracellular dialysis of PES had no effect on the Ca2+ current; concomitant extracellular perfusion of PES showed normal inhibitory activity, suggesting that the steroid binding site can only be accessed extracellularly. Analysis of tail currents at -80 mV demonstrated that THCC and PES slowed the rate of Ca2+ current activation and deactivation with no change in the voltage dependence of activation. Inhibition of the Ca2+ channel current by THCC and PES was voltage dependent. THCC primarily inhibits the omega-conotoxin (CgTX)-sensitive or N-type Ca2+ channel current. PE was nonselective in inhibiting both the CgTX- and the nifedipine (NIF)-sensitive Ca2+ channel current. These neurosteroids had no effect on the CgTX/NIF-insensitive current. In neurons isolated from pertussis toxin (PTX)-treated animals by chronic intracerebroventricular infusion (1000 ng/24 hr for 48 hr), the Ca2+ channel current inhibition by PES, PE, and THCC was significantly diminished. Intracellular dialysis with GDP-beta-S (500 microM) also significantly diminished the neurosteroid inhibition of the Ca2+ channel current. Intracellular dialysis with the general kinase inhibitors H-7 (100 microM), staurosporine (400 nM), and a 20 amino acid protein kinase inhibitor (1 microM) also significantly prevented the THCC and PES inhibition of the Ca2+ channel current. Intracellular dialysis with the more specific inhibitors of protein kinase C (PKC), the pseudosubstrate inhibitor (PKCI 19-36) (1-2 microM) and bisindolylmaleimide (1 microM) significantly diminished the THCC and PE inhibition of the Ca2+ channel current. Rp- cAMP (100 microM), a specific inhibitor of cAMP-dependent protein kinase (PKA), had no effect on the THCC and PE inhibition of the Ca2+ current.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.