Abstract
Neurosolver is a neuromorphic planner and a general problem solving (GPS) system. To acquire its problem solving capability, Neurosolver uses a structure similar to the columnar organization of the cortex of the brain and a notion of place cells. The fundamental idea behind Neurosolver is to model world using a state space paradigm, and then use the model to solve problems presented as a pair of two states of the world: the current state and the desired (i.e., goal) state. Alternatively, the current state may be known (e.g., through the use of sensors), so the problem is fully expressed by stating just the goal state. Mechanically, Neurosolver works as a memory recollection system in which training samples are given as sequences of states of the subject system. Neurosolver generates a collection of interconnected nodes (inspired by cortical columns), each of which represents a single point in the problem state space, with the connections representing state transitions. A connection map between states is generated during training, and using this learned memory information, Neurosolver is able to construct a path from its current state, to the goal state for each such pair for which a transitions is possible at all. In this paper we show that Neurosolver is capable of acquiring from scratch the complete knowledge necessary to solve any puzzle for a given Towers of Hanoi configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.