Abstract

Vesicular exocytosis plays an important role in many physiological processes. The dense-core vesicles release of chromaffin cells is a suitable model for the presynaptic process in neurosecretory cells. In this study, light-addressable potentiometric sensor (LAPS) was introduced as a label-free recording method for vesicle release by the local extracellular acidification. The chromaffin cells are directly cultured on the sensor surface. After cells and LAPS hybrid system is established, the events of vesicular exocytosis are recorded. Protons stored in the vesicles and co-released with transmitters, induced a brief acidic shifts in the cell-sensor cleft. Under the stimulation of the KCl and acetylcholine (Ach), the signals presented the different amplitude and exocytosis rate, and reflected the specific features of the exocytosis. The result indicates that neurosecretory cell-based biosensor will provide a useful platform for neurosecretion mechanism research by monitoring the exocytotic activities with extracellular acidification sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.