Abstract

Aims/IntroductionDiabetic polyneuropathy (DPN) develops in the early stage of diabetes. However, no common diagnostic protocol has yet been established. Here, to verify that the flicker electroretinogram using a hand‐held device can detect the early dysfunction of the peripheral nervous system in patients with diabetes, we investigated the correlation between the progression of DPN and neuroretinal dysfunction.Materials and MethodsIn total, 184 participants with type 1 or 2 diabetes underwent a flicker electroretinogram (ERG) using a hand‐held device RETeval™ and nerve conduction study. Participants were also evaluated for intima‐media thickness, ankle‐brachial index, toe brachial index and brachial‐ankle pulse wave velocity. Parameters of the nerve conduction study were used to diagnose the severity according to Baba’s classification. A multiple regression analysis was used to examine the associations of ERG parameters with the severity of DPN categorized by Baba’s classification. Diagnostic properties of the device in DPN were evaluated using a receiver operating characteristic curve.ResultsA multiple regression model to predict the severity of DPN was generated using ERG. In the model, moderate‐to‐severe DPN was effectively diagnosed (area under the receiver operating characteristic curve 0.692, sensitivity 56.5%, specificity 78.3%, positive predictive value 70.6%, negative predictive value 66.1%, positive likelihood ratio 2.60, negative likelihood ratio 0.56). In the patients without diabetic retinopathy, the implicit time and amplitude in ERG significantly correlated with the parameters of the nerve conduction study, brachial‐ankle pulse wave velocity and intima‐media thickness.ConclusionsElectroretinogram parameters obtained by the hand‐held device successfully predict the severity of DPN. The device might be useful to evaluate DPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call