Abstract

BackgroundCarriers of the FMR1 premutation are at increased risk of developing a late-onset progressive neurodegenerative disease, fragile X-associated tremor/ataxia syndrome (FXTAS), characterized by intention tremor, gait ataxia, and cognitive decline. Cross-sectional studies to date have provided evidence that neuropsychological changes, such as executive function alterations, or subtle motor changes, may precede the onset of formal FXTAS, perhaps characterizing a prodromal state. However, the lack of longitudinal data has prevented the field from forming a clear picture of progression over time within individuals, and we lack consensus regarding early markers of risk and measures that may be used to track response to intervention.MethodsThis was a longitudinal study of 64 male FMR1 premutation carriers (Pm) without FXTAS at study entry and 30 normal controls (Nc), aged 40 to 80 years (Pm M = 60.0 years; Nc M = 57.4 years). Fifty of the Pm and 22 of the Nc were re-assessed after an average of 2.33 years, and 37 Pm and 20 Nc were re-assessed a third time after an average of another 2.15 years. Eighteen of 64 carriers (28%) converted to FXTAS during the study to date. Neuropsychological assessments at each time point, including components of the Cambridge Neuropsychological Test Automated Battery (CANTAB), tapped domains of episodic and working memory, inhibitory control, visual attention, planning, executive control of movement, and manual speed and dexterity. Age-based mixed models were used to examine group differences in change over time on the outcomes in the full sample, and differences were further evaluated in 15 trios (n = 45; 15 Pm “converters,” 15 Pm “nonconverters,” 15 Nc) that were one-one matched on age, education, and socioeconomic status.ResultsCompared to Nc, Pm showed significantly greater rates of change over time in visual working memory, motor dexterity, inhibitory control, and manual movement speed. After multiple comparison correction, significant effects remained for motor dexterity. Worsening inhibitory control and slower manual movements were related to progression in FXTAS stage, but these effects became statistically non-significant after correcting for multiple comparisons. Higher FMR1 mRNA correlated with worsening manual reaction time but did not survive multiple comparisons and no other molecular measures correlated with neuropsychological changes. Finally, trio comparisons revealed greater rate of decline in planning and manual movement speed in Pm converters compared to Pm nonconverters.ConclusionsAccelerated decline in executive function and subtle motor changes, likely mediated by frontocerebellar circuits, may precede, and then track with the emergence of formal FXTAS symptoms. Further research to develop and harmonize clinical assessment of FMR1 carriers across centers is needed to prepare for future prophylactic and treatment trials for this disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.