Abstract

Parkinson's disease (PD) is a neuro-motor ailment that strikes adults in their older life and results in both motor and non-motor impairments. In neuronal and glial cells, PD has recently been linked to a dysregulated autophagic system and cerebral inflammation. Chloroquine (CQ), an anti-malarial drug, has been demonstrated to suppress autophagy in a variety of diseases, including cerebral ischemia, Alzheimer's disease (AD), and Traumatic brain injury (TBI), while its involvement in PD is still unclear. BALB/c mice were randomly allocated to one of four groups: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), CQ treatment with or without MPTP, or control. The CQ treatment group received CQ (intraperitoneally, 8mg/kg body weight) after 1h of MPTP induction on day 1, and it lasted for 7days. CQ therapy preserves dopamine levels stable, inhibits tyrosine hydroxylase (TH) positive dopaminergic cell death, and lowers oxidative stress. CQ reduces the behavioural, motor, and cognitive deficits caused by MPTP after injury. Furthermore, CQ therapy slowed aberrant neuronal autophagy (microtubule-associated protein-1 light chain 3B; LC3B & Beclin1) and lowered expression levels of the inflammatory cytokines interleukin 1 (IL-1β) and tumour necrosis factor (TNF-α) in the mice brain. In addition, CQ's antioxidant and anti-inflammatory effects were also tested in MPTP-mediated cell death in PC12 cells, demonstrating that CQ has a neurorestorative impact by successfully rescuing MPTP-induced ROS generation and cell loss.Our findings show that CQ's can help to prevent dopaminergic degeneration and improve neurological function after MPTP intoxication by lowering the harmful effects of neuronal autophagy and cerebral inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.