Abstract

The present study was designed to investigate the neuroprotective effect of hesperetin (Hp) against cadmium (Cd)-induced neurotoxicity in rats. Cadmium (3 mg/kg body weight (b.w.), subcutaneous) administration for 3 weeks demonstrated neurotoxicity in rats by the decreased activity of acetylcholinesterase in the brain. The oxidative stress markers (thiobarbituric acid reactive substances and protein carbonyls) were significantly increased with decreased enzymatic (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase) and non-enzymatic antioxidants (reduced glutathione, total sulphydryl groups and vitamin C). The proteolytic and membrane-bound enzymes (Na+ K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were also decreased with increased apoptotic markers (Bcl2 Associated X Protein (Bax), cytochrome C, caspase 3 and 9) and decreased anti-apoptotic marker (B-cell lymphoma 2 (Bcl2)) in the brain of Cd-treated rats. Moreover, Cd administration significantly decreased the mitochondrial electron transport chain complexes (I, II, III and IV) in the brain of rats. Preadministration of Hp (40 mg/kg b.w., oral) significantly attenuated the Cd-induced oxidative stress and mitochondrial dysfunction, restored the antioxidant and membrane-bound enzyme activities and decreased apoptosis in the brain of rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.