Abstract

The discovery of effective therapeutic agents against neurodegenerative diseases (NDDs) remains challenging. Neurotoxicity, inflammations, and oxidative stress are associating factors of NDDs. Sodium butyrate (NaB) is a short-chain fatty acid found in diet and produced in the gut that reportedly protects cancer, inflammation, obesity and so on. Previously, SH-SY5Y cells were studied as in vitro models of cerebral diseases. We have investigated the neuroprotective effects of NaB in SH-SY5Y cells stimulated with TNF-α. The expression of inflammatory mediators, including iNOS, COX-2, and mitogen-activated protein kinases (MAPK) and the apoptotic regulators, including P-53, Bcl-2 associated X (BAX) Protein, and caspase-3 were analyzed by western blot analysis. The anti-apoptotic gene Bcl-2 and the pro-apoptotic gene BAX translocation were also investigated. Our results showed that NaB attenuated cell death and inhibited the NO production and decreased the expression of iNOS and COX-2 in TNF-α-stimulated SH-SY5Y cells. NaB notably ameliorated apoptotic regulatory proteins p-53, Caspase-3 and caspase-1 level, and reversed phosphorylation of extracellular signal-regulated kinases and p-38 proteins. NaB ameliorated Glucocorticoid receptor and NLRP3 inflammasome expressions. NaB also suppressed the BAX nuclear translocation and modulated Nrf-2, HO-1 and MnSOD expression in neuroblastoma cells. In addition, NaB substantially reversed the reactive oxygen species in H2O2 induced SH-SY5Y cells. Altogether, our results suggest that sodium butyrate has potential therapeutic effects against NDDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call