Abstract

Alzheimer’s disease is a complex and multifactorial neurodegenerative disease. Central administration of colchicine, a microtubule-disrupting agent, causes loss of cholinergic neurons and cognitive dysfunction that is associated with excessive free radical generation. The present study was aimed at evaluating the effects of trans-resveratrol in the prevention of colchicine-induced cognitive impairment and oxidative stress in rats. Intracerebroventricular administration of colchicine (15 µg/5 µl) induced impaired cognitive functions in both the Morris water maze task and the elevated plus-maze task. Chronic treatment with resveratrol (10 and 20 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine injection, significantly improved the colchicine-induced cognitive impairment. Intracerebroventricular colchicine injection resulted in free radical generation characterized by alterations in oxidative stress markers with a significant increase in malondialdehyde (MDA) and nitrite levels and depletion of reduced glutathione (GSH) activity in the rat brains. It also showed a significant decrease in acetylcholinesterase activity. Besides improving cognitive dysfunction, chronic administration of resveratrol significantly reduced the elevated MDA and nitrite levels and restored the depleted GSH and acetylcholinesterase activity. Results of the present study indicated that trans-resveratrol has a neuroprotective role against colchicine-induced cognitive impairment and associated oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call