Abstract
Cerium oxide nanoparticles have been widely investigated against neurodegenerative diseases due to their antioxidant properties that aid in quenching reactive oxygen species. In this study, polyacrylic acid conjugated cerium oxide (PAA-CeO) nanoparticles were synthesized in a 50–60 nm size range with a zeta potential of − 35 mV. X-ray photoelectron spectroscopy analysis revealed a mixed valence state of Ce4+ and Ce3+. PAA-CeO nanoparticles were safe for undifferentiated (UN-) and retinoic acid-differentiated (RA-) human neuroblastoma SH-SY5Y cells and reduced the extent of cell damage evoked by hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA). In the H2O2 model of cell damage PAA-CeO did not affect the caspase-3 activity (apoptosis marker) but attenuated the number of propidium iodide-positive cells (necrosis marker). In the 6-OHDA model, nanoparticles profoundly reduced necrotic changes and partially attenuated caspase-3 activity. However, we did not observe any impact of PAA-CeO on intracellular ROS formation induced by H2O2. Further, the flow cytometry analysis of fluorescein isothiocyanate-labeled PAA-CeO revealed a time- and concentration-dependent cellular uptake of nanoparticles. The results point to the neuroprotective potential of PAA-CeO nanoparticles against neuronal cell damage induced by H2O2 and 6-OHDA, which are in both models associated with the inhibition of necrotic processes and the model-dependent attenuation of activity of executor apoptotic protease, caspase-3 (6-OHDA model) but not with the direct inhibition of ROS (H2O2 model).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.