Abstract

Neuroprotective effects of N-acetylaspartylglutamate (NAAG), the precursor of glutamate and a selective agonist at the Group II metabotropic glutamate (mGlu) receptor, against hypoxic-ischemic brain injury were examined in a neonatal rat model of cerebral hypoxia-ischemia. The neonatal hypoxia-ischemia procedure (unilateral carotid artery ligation followed by exposure to an 8% oxygen hypoxic condition for 1.5 h) was performed in 7-day-old rat pups. Following unilateral carotid artery ligation, NAAG (0.5 to 20 mg/kg, i.p.) was administered before or after the hypoxic exposure. Brain injury was examined 1-week later by weight reduction in the ipsilateral brain and by neuron density in the hippocampal CA1 area. In the saline-treated rat, neonatal hypoxia-ischemia resulted in severe brain injury as indicated by a 24% reduction in the ipsilateral brain weight. Low doses of NAAG (2–10 mg/kg, but not 0.5 mg/kg), administered before or even if 1 h after the hypoxic exposure, greatly reduced hypoxia-ischemia-induced brain injury (3.8–14.2% reduction in the ipsilateral brain weight). A high dose of NAAG (20 mg/kg) was ineffective. While l(+)-2-Amino-4-phosphonobutyric acid ( l-AP4) and trans-[1S,3R]-1-Amino-cyclopentane-1, 3-dicarboxylic acid ( t-ACPD) were unable to provide protection against hypoxic-ischemic brain injury, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), an inhibitor of N-acetylated alpha-linked acidic dipeptidase (NAALADase), which hydrolyzes endogenous NAAG into N-acetyl-aspartate and glutamate, significantly reduced neonatal hypoxia-ischemia-induced brain injury. (αS)-α-Amino-α-[(1S, 2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid (LY341495), a selective antagonist at the mGlu 2/3 receptor, prevented the neuroprotective effect of NAAG. Neuron density data measured in the hippocampal CA1 area confirmed that ipsilateral brain weight reduction was a valid measure for hypoxic-ischemic brain injury. Neonatal hypoxia-ischemia stimulated an elevation of cyclic AMP (cAMP) concentration in the saline-treated rat brain. NAAG, l-AP4 and t-ACPD all significantly decreased hypoxia-ischemia-induced elevation of cAMP. LY341495 blocked the effect of NAAG, but not of l-AP4 or t-ACPD, on hypoxia-ischemia-stimulated cAMP elevation. The overall results suggest that the neuroprotective effect of NAAG is largely associated with activation of mGlu 2/3 receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call