Abstract

ObjectiveParkinson's disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra (SN). Our previous study demonstrated kukoamine A (KuA) to exhibit strong neuroprotective effects through antioxidative stress, and autophagy in MPTP/MPP+-induced PD models in vivo and in vitro. It is necessary to evaluate the efficacy of the anti-PD effects under various models. MethodsIn the present study, total chemical synthesis was used to obtain KuA, which performed low content in Lycii Cortex. Then, 6-OHDA-induced PD model of PC12 cells was used to investigate the effects of KuA on PD. ResultsOur results demonstrated that KuA ameliorated cell loss and mitochondrial membrane potential (MMP) loss, and inhibited Bax/Bcl-2 ratio increase that were induced by 6-OHDA. Iron accumulation in SN is thought to participate in neuronal death in PD, which subsequently resulted in oxidative stress and overexpression of α-synuclein caused by iron metabolism protein disorder. In our study, KuA could chelate cellular iron content and decrease iron influx. Moreover, KuA could upregulate the expression of ferroportin1 and Hephaestin, downregulate the expression of DMT1, TfR, and Ferritin to maintain cellular iron homeostasis avoiding neuronal death from cellular iron deposition. Moreover, KuA could decrease the expression of a-synuclein in cells. All the results indicated that KuA protected against neurotoxin-induced PD due to the apoptosis inhibition and iron homeostasis maintaining. ConclusionKuA treatment might represent a neuroprotective treatment for PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call