Abstract

Stroke is a leading cause of disability and death worldwide. Ivermectin is a broad-spectrum anti-parasitic agent with potential anti-bacterial, anti-viral, and anti-cancer effects. However, the effects of ivermectin on the brain are poorly described. This study examined the effects of ivermectin on cerebral ischemia-reperfusion (IR) in rats. A rat model of transient global IR was induced by bilateral carotid artery occlusion for 20min. Rats received ivermectin (2mg/kg/day, ip) one hour after inducing cerebral IR for three consecutive days at 24-h intervals. Next, we examined the effects of ivermectin on brain infarction, histopathology, malondialdehyde levels, myeloperoxidase activity, spatial learning and memory, and phospho-AMPK protein levels. The results showed that ivermectin reduced brain infarct size (P < 0.001) and histopathological changes such as cerebral leukocyte accumulation and edema (P < 0.05) compared to untreated rats with IR. Treatment with ivermectin also decreased myeloperoxidase activity (P < 0.01) and malondialdehyde levels (P < 0.05) while increasing AMPK activity (P < 0.001), memory, and learning compared to the untreated IR group. Overall, we show for the first time that ivermectin conferred neuroprotective effects in a rat model of cerebral IR. Our results indicate that three days of treatment with ivermectin reduced brain infarct size, lipid peroxidation, and myeloperoxidase activity and improved memory and learning in rats with cerebral IR. These effects likely occurred via AMPK-dependent mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call