Abstract

There is little information available on the mechanisms underlying the neuroprotective actions of the organoselenium compound ebselen. In this study, we sought to determine the relationship between alterations in the expression of Bcl-2 and Bax proteins and intracellular levels of calcium and the protective effects of ebselen with a concentration range of 0.01–20 μM against glutamate toxicity in cultured mouse cortical neurons. Pretreatment with ebselen at moderate doses (4–12 μM), but not at lower or higher doses, significantly improved glutamate-induced suppression of cell viability. Pretreatment with ebselen (8 μM) also prevented apoptotic alterations, completely reversed the suppression of Bcl-2 expression, and significantly inhibited Bax overexpression, but did not alter elevated intracellular concentrations of calcium induced by glutamate. Pre-, co-, and post-treatment with ebselen (8 μM) had similar potency in improving the decreased viability of glutamate-exposed cells. These results indicate that the neuroprotective effects of ebselen at low doses are associated with the regulation of Bcl-2 and Bax proteins but appear to be independent of glutamate-mediated elevation of intracellular calcium, suggesting that different mechanisms are involved in the actions of low and high dose regimens. Ebselen may be an effective agent used for early treatment of acute brain injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.