Abstract

Prenatal exposure to valproic acid (VPA) in rat offspring is capable of inducing experimental autism with neurobehavioral aberrations. This study investigated the effect of docosahexaenoic acid (DHA) on hippocampal cell death, learning and memory alteration in an experimental rat autism model. We found that DHA supplementation (75, 150 or 300mg/kg/day, 21 days) rescued the VPA (600mg/kg) induced DHA reduction in plasma and hippocampus in a dose-dependent manner, increased the levels of hippocampal p-CaMKII and p-CREB without affecting total protein level, and altered BDNF-AKT-Bcl-2 signaling pathway, as well as inhibited the activity of caspase-3. DHA also influenced the content of malondialdehyde (MDA) and the activities of antioxidant enzymes in the VPA-treated offspring. Consistent with the previous results, we also observed that 300mg/kg DHA supplementation markedly increased the cell survival, decreased the cell apoptosis, and increased mature neuronal cell in the hippocampus in VPA-treated offspring. Utilizing the Morris water maze test, we found that DHA prevented cognitive impairment in offspring of VPA-treated rats. The data suggested that DHA may play a neuroprotective role in hippocampal neuronal cell and ameliorates dysfunctions in learning and memory in this rat autism model. Thus, DHA could be used as treatment intervention for mitigating behavioral dysfunctions in autism spectrum disorder (ASD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.